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Abstract
Genomic Selection (GS) predicts traits using genome-wide markers, speeding up genetic progress and enhancing 
breeding efficiency. Recent emphasis has been placed on deep learning models to enhance prediction accuracy. 
However, current deep learning models focus on learning specific phenotypes for the given task, overlooking the 
inter-correlations among different phenotypes. In response, we introduce MtCro, a multi-task learning approach 
that simultaneously captures diverse plant phenotypes within a shared parameter space. Extensive experiments 
reveal that MtCro outperforms mainstream models, including DNNGP and SoyDNGP, with performance gains of 
1-9% on the Wheat2000 dataset, 1-8% on Wheat599, and 1-3% on Maize8652. Furthermore, comparative analysis 
shows a consistent 2-3% improvement in multi-phenotype predictions, emphasizing the impact of inter-phenotype 
correlations on accuracy. By leveraging multi-task learning, MtCro efficiently captures diverse plant phenotypes, 
enhancing both model training efficiency and prediction accuracy, ultimately accelerating the progress of plant 
genetic breeding. Our code is available on ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​c​h​a​o​​d​i​​a​n​1​2​/​m​t​c​r​o.

Key points
We revealed a strong correlation among plant phenotypes, providing a new perspective on the interaction 
between phenotypes in the field of gene-phenotype prediction.
We developed the MtCro model based on the concept of multitask learning, incorporating task-shared parameter 
networks and task-specific networks. This enables the model to simultaneously learn multiple phenotypes of plants.
Through extensive experiments on all phenotypes in different datasets, MtCro consistently outperforms traditional 
models, saving training resources while improving prediction accuracy. This validates the effectiveness of MtCro in 
handling plant phenotype prediction tasks.
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Introduction
Given the future challenges posed by population growth 
and climate change [1, 2], the annual increase in pro-
duction needs to surpass the historical annual growth 
trends in yields [3]. Plant breeding technologies represent 
a viable partial solution to face the challenges ahead [4, 
5]. As an emerging technology of this century, Genomic 
Selection (GS) has been increasingly applied in plant 
breeding [6]. GS employs markers spread across the 
entire genome for the purpose of genomic prediction [7], 
accelerates genetic advancements by reducing the dura-
tion of the breeding cycle, enabling rapid selection, and 
improving the efficiency of field evaluations [8]. Leverag-
ing these advantages, GS has gained widespread recogni-
tion in numerous studies over recent years, and has been 
recently illustrated by a variety of plant breeding studies 
for crops like rice [9, 10], wheat [11, 12], and maize [13, 
14].

To enhance the crucial accuracy of predictions, a wide 
array of methods have been developed for construct-
ing GS prediction models [15–18]. By integrating tech-
niques such as gBLUP [19], CropGBM [20], Cropformer 
[21], and DNNGP [22], which draw on principles of lin-
ear statistics and machine learning, this diverse toolkit 
offers a robust strategy for improving prediction accu-
racy within genomic studies. However, these prediction 
models reported could be further refined for multi-trait 
prediction tasks to align more closely with the practi-
cal application strategies of GS. Generally, breeders 
must balance multiple objectives, including optimizing 
yield, grain quality, and disease resistance, to ensure the 
productivity of a crop variety [21]. Therefore, breed-
ers meticulously compile different types of phenotype 
data from the training population and execute genome 
sequencing, culminating in the establishment of a con-
solidated Genome-(multi)Trait dataset for prediction 
models. Current models typically split the dataset into 
several Genome-(single)Trait subsets, carrying out a full 
“train-test-predict” pipeline independently on each [20, 
22, 23, 24]. In some cases, hundreds of models are built 
for varying phenotypes within the same population [25], 
adding substantial complexity to the task. Additionally, 
this approach overlooks the genetic correlations between 
different phenotypes, which could be beneficial in pre-
diction efforts [26]. Moreover, dividing the dataset into 
multiple subsets reduces the efficiency of utilizing the 
training data. Recent studies have explored multi-trait 
prediction, but they often apply identical model weights 

across all phenotypes, overlooking trait-specific char-
acteristics [27–31]. This generalization can limit per-
formance compared to single-trait models, as it fails to 
capture the unique predictive patterns essential for each 
phenotype.

In this study, we introduce MtCro, incorporating the 
concept of multi-task learning in deep learning, to con-
currently learn multiple phenotypes within a single plant. 
MtCro consists of a shared-bottom network and several 
task-specific tower networks. The shared-bottom net-
work is responsible for learning the correlations between 
phenotypes, while the task-specific networks focus on 
capturing the specific features of individual phenotypes. 
This allows the MtCro to capture inter-phenotype cor-
relations within a shared parameter space, enhancing 
predictive performance across various phenotypes. We 
conducted experiments on the Maize8652, Wheat2000, 
and Wheat599 datasets. Experimental results demon-
strate that MtCro outperforms mainstream models in 
terms of Pearson correlation coefficients. Meanwhile, 
MtCro’s efficiency is evident as it requires only one 
training session for different phenotypes within differ-
ent datasets, saving considerable parameter tuning time. 
Finally, we conduct a comparative analysis of MtCro’s 
performance on single-phenotype and multi-phenotype 
predictions under the same architecture. Results indicate 
a consistent 2-3% improvement in multi-phenotype pre-
dictions, especially for highly correlated traits.

Materials and methods
Datasets
This paper employs three datasets, encompassing two 
crops, namely wheat and maize. It conducts analyses on 
various phenotypes of these two crops, as well as the 
performance of the same phenotype in different envi-
ronments. The datasets are Maize8652, Wheat2000 and 
Wheat599.

Maize8652 consists of 8652 samples of F1 hybrid 
maize, with recorded phenotypic measurements for days 
to tasseling (DTT), plant height (PH), and ear weight 
(EW). Produced through the crossings of a maternal pool 
and a panel of 30 paternal testers using a North Carolina-
II design (as described in the Methods) [32], Maize8652 
originated from a maternal pool known as CUBIC 
(Complete-diallel design plus Unbalanced Breeding-like 
Inter-Cross) [33]. This maternal population comprised 
1428 inbred lines, derived from 24 elite founder lines 
that represented local-adaptive alleles. The paternal pool 

We compared the performance of single-tower MtCro and multi-tower MtCro with the same model architecture on 
identical phenotypes. Our analysis reveals that highly correlated phenotypes significantly promote the prediction 
results of the current phenotype.
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comprised 30 tester lines representing six major heter-
otic groups, primarily consisting of improved overseas 
germplasms carrying advantageous foreign alleles. Con-
sequently, the population is structured into thirty sets of 
paternal half-sibling subpopulations, abbreviated as F_1s, 
showcasing diverse patterns of heterosis effects in hybrid 
maize. Following the handling of data anomalies, includ-
ing missing values, this study retained 27,379 genotype-
phenotypes pairs. MtCro uses the coding scheme 0–9 to 
represent all forms of the genotype as follows: AA (0), AT 
(1), TA (1), AC (2), CA (2), AG (3), GA (3), TT (4), TC 
(5), CT (5), TG (6), GT (6), CC (7), CG (8), GC (8), GG 
(9). Following the encoding process, we utilized Principal 
Component Analysis (PCA [34] to reduce the dimension-
ality of the genotype data to 2,000 dimensions.

Wheat2000 includes 2000 Iranian bread wheat (Triti-
cum aestivum) landraces sourced from the CIMMYT 
wheat gene bank [35]. Genotyping of these landraces was 
performed using 33,709 DArT markers. Individual alleles 
were coded as either 1 (present) or 0 (absent) in the 
recorded accessions. After implementing dimensional-
ity reduction via PCA, a reduced set of principal compo-
nents was retained for subsequent analysis. The dataset 
involves the evaluation of six agronomic traits: thousand 
kernel weight (TKW), test weight (TW), grain length 
(GL), grain width (GW), grain height (GH), and grain 
protein (GP).

Wheat599, a product of the Global Wheat Program 
at the International Maize and Wheat Improvement 
Center [11], is constituted by 599 historical wheat lines. 
The genotyping process involved the use of 1447 DArT 
(Diversity Array Technology) markers, which were gen-
erated by Triticarte Pty [36]. Ltd. based in Canberra, 
Australia (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​​d​i​v​​e​r​s​i​​t​y​a​​r​r​​a​y​​s​.​c​o​m). ​E​l​i​m​i​n​a​t​
i​o​n of markers with allele frequencies below 0.05 was 
performed, and any missing genotypes were imputed 
through the utilization of samples from the marginal 
distribution of marker genotypes. Following a stringent 
quality control process, a total of 1279 markers were 
retained. The average yield phenotype of the same geno-
type across four environments in this dataset is treated 
as four distinct phenotypes in this study. In the experi-
mental section, we utilized the processed Wheat2000 and 
Wheat599 datasets, which were provided by the DNNGP 
[22].

MtCro
The fundamental idea of multi-task models involves par-
allel backpropagation through multiple outputs. Due 
to the sharing of a common hidden layer among the 
outputs, knowledge learned from different tasks can be 
shared while training tasks in parallel. MtCro introduces 
a mixed expert mechanism, dividing the shared layer into 
multiple expert groups. Multiple tasks share the learning 

from these expert groups, and a mixed network dynami-
cally determines the weights of the expert groups corre-
sponding to each task. This design enables the model to 
both share and differentiate specific knowledge among 
tasks.

The architecture of MtCro is depicted in Fig. 1.c, con-
sisting of an input layer, multiple expert groups, gating 
networks, and tower networks. We annotated the muta-
tion information in the SNPs, recording mutations as “1” 
(mutation occurred) and “0” (mutation did not occur). 
Subsequently, these mutation data were subjected to 
dimensionality reduction using PCA [34]. The reduced-
dimensional data were then input into the model’s input 
layer, with the data processed in batches according to 
the specified batch size. The expert groups, embedded 
within the shared bottom of the designed MtCro, con-
sist of six specialized units. Each of these expert groups 
is structured with six layers, wherein each layer com-
prises a linear function, a batch normalization operation, 
a Rectified Linear Unit (ReLU) activation function, and a 
dropout mechanism. The linear function captures linear 
relationships, batch normalization standardizes inputs, 
and dropout regularizes the model. The choice of ReLU 
as the activation function is motivated by its ability to 
introduce non-linearity, aiding in learning complex pat-
terns efficiently. Additionally, ReLU helps mitigate the 
vanishing gradient problem, ensuring effective training of 
the deep neural network. The sparse activation induced 
by ReLU enhances interpretability, contributing to the 
model’s overall robustness and performance. The gating 
network dynamically allocates weights based on the traits 
that need to be predicted at the moment. Ultimately, the 
output layer generates the final prediction results.

Specifically, the output of the gating network layer is:

	
fk(x) =

n∑
i=1

gk(x)ifi(x)� (1)

In Eq. (1), gk (x)i represents the output of the ith gating 
network, indicating the weight of the ith expert network 
for the kth task, with 

∑ n
i=1g (x)i = 1. The term fi (x) 

denotes the ith expert network. The primary objective 
of this step is to achieve conditional computation, where 
for each input example, the model selectively involves a 
subset of expert networks determined by the gating net-
work. fk (x) represents the mixed output of the kth task 
through the collaboration of expert and gating networks.

The computation method for the gating network gk (x) 
is:

	 gk(x) = softmax (Wgkx)� (2)

https://www.diversityarrays.com
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The matrix parameter Wgk ∈ Rn× d in the formula is 
a learnable matrix, where n represents the number of 
expert networks, and d is the dimensionality of features. 
Each gating network for a task learns how to select a sub-
set of expert networks. Each gating network effectively 
linearly partitions the input space into n regions, with 
each region corresponding to one expert.

Finally, the output for the kth task is obtained through 
the tower network layer hk:

	 yk = hk
(
fk(x)

)
� (3)

The structure of the tower network closely resembles 
that of the expert network in the MtCro model. Unlike 
the expert network, the tower network adopts a simpli-
fied single-layer architecture. This streamlined design is 
intentional, focusing the tower network on the integra-
tion of expert network outputs without the added com-
plexity of multiple layers. The activation function in the 
tower network is distinctive, as it opts for softmax, intro-
ducing normalization at the output layer. This operation 
facilitates the activation and recovery of task-specific fea-
tures that may have been attenuated or lost in the expert 
network layers. Furthermore, a linear layer is strategically 
incorporated into the final layer of the tower network 
to map its output effectively to the ultimate prediction 
space for the task. The combination of Softmax and 

Linear layers enables the model to adaptively adjust task 
features across multiple tasks, allowing unique features 
that may have been diminished to be re-emphasized and 
reactivated through Softmax.

As shown in Fig. 1.b, the multitask model, compared to 
traditional models, can efficiently utilize a single model to 
learn the SNP information of plants and predict multiple 
traits. In contrast, traditional models require the use of 
multiple models to learn these diverse traits, highlighting 
the inherent advantages of multitask models. As a result, 
multitask models exhibit significant advantages in terms 
of model predictive capability, training time, and model 
parameter count when compared to traditional models.

Genetic prediction inputs typically involve features 
with several thousand dimensions. To address this issue, 
we undertook a redesign of the MtCro architecture, par-
ticularly adjusting parameters related to expert groups 
and towers to adapt to the larger-scale input parameters 
in genetic prediction tasks. Specifically, we dynamically 
adjusted the number of expert groups and towers during 
training based on the varying lengths of SNP groups. This 
design modification takes into account the specificity of 
genetic prediction tasks, ensuring that MtCro can better 
leverage its strengths when dealing with large-scale SNP 
data, thereby enhancing the model’s performance.

Fig. 1  a: Overall flowchart of the MtCro model. b: Comparison of the training processes between the MtCro model and other models. Traditional models 
require dataset splitting based on different objectives during training and the use of different models for training different phenotypes. In contrast, the 
MtCro model only requires a single model to simultaneously predict multiple phenotypes. c: Detailed architecture of the MtCro model, including a shared 
expert network layer composed of n experts and k task-specific tower network layers. Each tower network learns a phenotype
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Methods of comparison
This study extensively investigated the performance of 
different models in genomic selection by comparing 
multiple single-task models. In the realm of traditional 
models, the study first examined GBLUP (Genomic Best 
Linear Unbiased Prediction model) [19], a classical sta-
tistical model designed specifically for genomic selec-
tion. Based on a linear model, GBLUP analyzes individual 
genomic information to predict their performance and 
traits, widely applied in livestock and agricultural breed-
ing. Secondly, a comparison was made with LightGBM 
[20], a decision-tree-based gradient boosting model 
known for its outstanding performance in handling 
large-scale data and high-dimensional feature scenarios. 
LightGBM exhibits efficient training speed and robust 
generalization capabilities, mainly employed for solving 
regression and classification problems. Finally, a com-
parison was drawn with SVR (Support Vector Regression 
model) [37], a well-known machine learning method that 
accepts various types of data as input and can be paired 
with multiple kernel functions for handling classification 
and regression problems.

In the realm of deep learning models, DeepGS [38], a 
deep learning genomic selection model based on deep 
convolutional neural networks. DeepGS utilizes deep 
convolutional neural networks to jointly represent fea-
tures in the genotype through hidden variables, employ-
ing strategies such as convolution and sampling to reduce 
the complexity of high-dimensional genomic data. Sec-
ondly, DLGWAS [39] was compared, a whole-genome 
association analysis model based on a dual-CNN flow. 
DLGWAS uses convolutional neural networks to predict 
the quantity traits of SNPs, studies the contribution of 
genotypes to traits significantly, and treats missing SNPs 
as new genotypes in the deep learning model. DNNGP 
[22], a deep neural network model for genomic predic-
tion. Then, DNNGP employs a multi-layered hierarchi-
cal structure and applies normalization, early stopping, 
rectified linear activation functions, etc., to prevent 
overfitting, making it adaptable to various omics data 
for phenotype prediction. The introduction of these 
deep learning models aims to explore more complex 
genotype-phenotype associations, providing more accu-
rate and comprehensive predictions for genomic selec-
tion. SoyDNGP [24], inspired by the input structure of 
images, transforms SNP sequences into a multi-channel 
input, resembling image-like representations. Employing 
a distinctive convolutional neural network architecture, 
SoyDNGP has demonstrated high predictive capabili-
ties, particularly on soybean and similar varieties. Lastly, 
MTUE [31] employs a fully connected architecture 
within a deep learning model to address genomic selec-
tion tasks across multiple phenotypes and environments. 
Experimental results demonstrate that MTUE achieves 

significantly higher predictive accuracy compared to 
single-trait methods in a single-environment context, 
highlighting the advantages of leveraging multi-trait and 
multi-environment data for genomic prediction.

Evaluation metrics utilized
We use the Pearson correlation coefficient to assess the 
relationship between predicted values and actual values. 
The Pearson correlation coefficient is a statistical metric 
that measures the strength and direction of a linear rela-
tionship between two variables. The calculation involves 
the covariance and the standard deviations of the two 
variables. Firstly, the covariance of the two variables 
is calculated, and then it is divided by the product of 
their respective standard deviations. The resulting value 
ranges from − 1 to 1, where 1 indicates a perfect positive 
correlation, -1 indicates a perfect negative correlation, 
and 0 indicates no linear relationship. The calculation of 
the Pearson correlation coefficient provides a quantita-
tive measure to assess the strength and direction of the 
linear relationship between variables.

	
γ = cov(X, Y )

σX ∗ σY
� (4)

Equation 4 outlines the calculation method for the Pear-
son correlation coefficient. In the formula, cov(X, Y) rep-
resents the covariance between variables X and Y, while 
σ_X and σ_Y denote the standard deviations of variables 
X and Y, respectively.

Results
Phenotypic correlation analysis
In our study, we employed the Pearson correlation coeffi-
cient [40] as a statistical metric to measure the correlation 
between different phenotypes, and visually represented 
these relationships by creating a heatmap. The Pearson 
correlation coefficient is widely used for assessing the 
linear relationship between two variables, with values 
ranging from − 1 to 1. Specifically, a value of 1 indicates 
a perfect positive correlation, -1 signifies a perfect nega-
tive correlation, and 0 indicates no linear relationship. 
For each pair of phenotypes, we calculated the Pearson 
correlation coefficient, obtaining the strength and direc-
tion of the linear relationship between them through the 
computation of covariance and standard deviation. Given 
that the Pearson correlation coefficient can be positive or 
negative, and recognizing that negative correlations also 
indicate associations between phenotypes, we chose to 
take the absolute value during the creation of the heat-
map. This operation mapped all correlation values to the 
range of 0 to 1, providing a clearer representation of the 
relationship between the two sets of phenotypes.
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As shown in Fig.  2, we conducted a detailed analy-
sis of the phenotypic correlations within each of the 
three datasets, revealing strong relationships present in 
each dataset. In the Wheat2000 dataset, the correlation 
between the TKW and WIDTH phenotypes reached a 
significant 0.76. Further examination in the Wheat599 
dataset focused on the correlation of the same pheno-
type across different environments. The results indicated 
that the phenotype in ENV1 exhibited lower correla-
tions with phenotypes in the other three environments, 
while the correlation between phenotypes in ENV2 and 
ENV3 reached a high 0.66. Within the Maize8652 data-
set, we observed a correlation of 0.44 between DTT and 
PH, and a correlation of 0.22 between EW and both DTT 
and PH. This finding suggests that different phenotypes 
and the same phenotype in different environmental con-
ditions exhibit significant correlations. These results pro-
vide crucial insights for a deeper understanding of the 
relationships between different traits and their variations 
across diverse environmental settings.

In order to provide a clearer illustration of the spe-
cific relationship between highly correlated phenotypes 
in the Wheat2000 dataset, this study conducted an in-
depth analysis of the TKW and WIDTH phenotypes 
using Fig. 3. Firstly, mean centering was applied to both 
TKW and WIDTH phenotypes. This involved calculating 
the average values for each phenotype in the dataset and 
then subtracting these averages from the corresponding 
measurement values. This mean centering process was 
employed to eliminate overall offsets between the two 
phenotypes, ensuring a more accurate and interpretable 
analysis. To spatially separate TKW and WIDTH for a 
clearer observation of the data distribution, WIDTH val-
ues were globally reduced by 6 units, shifting the data 
distribution to around − 6. Finally, linear fitting was per-
formed on the adjusted WIDTH values. The visualization 
results indicate a high level of consistency in the data dis-
tribution between TKW and WIDTH.

Fig. 3  Distribution of TKW and WIDTH Phenotype Data in the Wheat2000 Dataset. The processed phenotypic pairs are arranged in descending order 
based on TKW values. The horizontal axis represents different samples (selected every 10 samples), while the vertical axis depicts the values of TKW and 
WIDTH

 

Fig. 2  This heatmap illustrates the Pearson correlation coefficients among all phenotypes in the Wheat2000/Wheat599/Maize8652 dataset. Each row 
and column represent a phenotype, and the color intensity in each cell reflects the Pearson correlation coefficient between the corresponding pair of 
phenotypes
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Parameter settings and experimental validation of MtCro
This study implemented the MtCro model based on the 
PyTorch framework. The model was configured with a 
learning rate of 0.0001, utilizing the Pearson distribu-
tion loss function. During the model training process, 
the batch size was set to 32 to enhance training accuracy, 
and the number of training epochs was set to 100. The 
model training configuration also incorporates a weight 
decay rate and an early stopping criterion to enhance 
generalization and efficiency. The weight decay rate was 
set to 0.00001, which helps to regularize the model by 
constraining the magnitude of the weights and thereby 
reducing the likelihood of overfitting. This small decay 
rate ensures that the model’s parameters remain con-
trolled, contributing to improved generalization on 
unseen data. Additionally, an early stopping patience 
parameter of 30 epochs was established, allowing the 
training to halt if there is no improvement in perfor-
mance within this specified number of epochs. This early 
stopping mechanism reduces unnecessary computation, 
ensuring an optimal balance between training duration 
and model performance.

In the model configuration, each expert network within 
the shared bottom structure consists of a 6-layer Multi-
layer Perceptron (MLP). We conducted experiments to 
examine the impact of varying the number of MLP layers 
on model performance. The results, presented in Table 1, 
demonstrate the influence of MLP depth on the model’s 
effectiveness and provide insights into selecting an opti-
mal layer configuration for improved performance. We 
conducted experiments on the Wheat2000 dataset, keep-
ing all parameter settings consistent except for the num-
ber of layers in the expert networks. The results indicate 
that as the number of layers increases, the model’s over-
all performance initially improves but then declines. This 
trend suggests an optimal range for the number of layers, 
beyond which additional depth may lead to overfitting or 
diminished returns in performance.

MtCro compared with other mainstream methods
We conducted a comparative analysis between MtCro 
and six mainstream single-task learning methods, 
including GBLUP, LightGBM, SVR, DeepGS, DLG-
WAS, DNNGP, and SoyDNGP. All experiments used 
fixed random seeds, selecting 10% of the samples as the 
test set, and training the models on the remaining 90% 
of the samples. During training, 20% of the training sam-
ples were used as a validation set to select the best-per-
forming epoch based on validation performance. Initial 
training and testing were performed on the Wheat2000 
dataset, which is characterized by a relatively extensive 
set of phenotypes. The experimental results indicate that 
MtCro outperforms other models across all phenotypes. 
Specifically, it surpasses the best-performing single-task 
model by 1% in LENGTH and WIDTH phenotypes, and 
by 2–3% in TKW, TESTW, and HARD phenotypes (Fig. 
4). Notably, its performance is particularly strong in the 
PROT phenotype, exceeding the best single-task model 
by 8%. Upon analysis, predictions for other phenotypes 
are consistently above 0.66, while PROT’s predictions are 
relatively lower. This study attributes this to the use of a 
multi-task model, enabling the model to indirectly learn 
the poorly performing PROT phenotype by leveraging 
accurate predictions from other phenotypes. As a result, 
the model demonstrates improved predictions on the 
challenging PROT phenotype.

Next, we conducted experiments on the Wheat599 
dataset, characterized by a more limited dataset and 
fewer phenotypes. Remarkably, the MtCro model show-
cased optimal efficacy across all phenotypes in this 
context in Fig. (5). Specifically, it surpassed the best-per-
forming model by 1% in ENV1 and exhibited a superior 
margin of over 3% in the remaining three environments. 
Upon scrutinizing Fig. 3, it is discerned that the pheno-
typic correlations in ENV1 are comparably diminished, 
resulting in a relatively modest enhancement in the 
model’s prediction of average yield for this environment. 
In contrast, the model demonstrated notable proficiency 

Table 1  The effect of varying the number of layers in the expert networks on model performance, with all experiments conducted 
on the Wheat2000 dataset. The “Expert Layer” column represents different layer configurations, and the results are reported as Pearson 
correlation coefficients
Expert Layer TKW TESTW LENGTH WIDTH HARD PROT
1 0.62 0.58 0.68 0.75 0.61 0.51
2 0.62 0.59 0.68 0.75 0.62 0.52
3 0.64 0.60 0.69 0.76 0.64 0.54
4 0.65 0.60 0.70 0.76 0.65 0.55
5 0.68 0.63 0.72 0.76 0.68 0.56
6 0.70 0.66 0.75 0.78 0.71 0.58
7 0.69 0.65 0.76 0.79 0.67 0.57
8 0.66 0.63 0.73 0.76 0.64 0.54
9 0.65 0.60 0.70 0.76 0.64 0.53
10 0.64 0.60 0.69 0.76 0.63 0.52
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in predicting average yield across the other three envi-
ronments, where phenotypic correlations are more 
robust. We observed a relatively poorer performance of 
the DeepGS model on the Wheat599 dataset compared 
to the Wheat2000 dataset. This can be attributed to the 
limited sample size in the Wheat599 dataset, which is not 
conducive to the deep hierarchical network architecture 
employed by DeepGS.

Then, leveraging the Maize8652 dataset with a more 
comprehensive representation of genotypes, a meticu-
lous comparative analysis was conducted among models 
exhibiting superior performance on the Wheat2000 and 
Wheat599 datasets—specifically, LightGBM, DNNGP, 
SoyDNGP, MTUE and MtCro (in Fig. 6). The assessment 
encompassed a thorough examination of Pearson cor-
relation coefficients and Mean Squared Error (MSE) for 

each model. The findings reveal that, for the Ear Weight 
(EW) phenotype with the lowest phenotypic correla-
tion, MtCro surpassed the second-best LightGBM model 
by 1%. In the instances of the strongly correlated Days 
to Tasseling (DTT) and Plant Height (PH) phenotypes, 
MtCro outperformed the second-best models by 2 and 
3%, respectively. In terms of MSE calculations, Light-
GBM exhibited a marginally superior result of 0.003 
compared to MtCro. However, when scrutinizing the 
MSE for the other two phenotypes, LightGBM displayed 
more significant mean squared losses, signifying a dimin-
ished stability in its quantitative prediction results com-
pared to MtCro.

Additionally, we observed that multi-task models can 
simultaneously learn multiple phenotypes to be predicted 
in a single training session, whereas other approaches 

Fig. 4  Pearson Correlation Coefficients between Model Predictions and Ground Truth on the Wheat2000 Dataset
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require training multiple models based on the number of 
phenotypes predicted (as shown in Fig. 1.b). Deep learn-
ing models also involve tuning various parameters during 
training, such as batch size and learning rate, resulting in 
significantly higher training costs for multiple models. 
Multi-task models not only enhance the predictive capa-
bilities across various phenotypes but also save training 
costs.

Unveiling the benefits of multi-tasking by revitalizing 
MtCro
To further dissect the advantages brought by inter-
phenotypic associations to the models, we devised a 

Single-Tower MtCro model tailored for single-phenotype 
prediction, contrasting it with the Multi-Tower MtCro 
model designed for multi-phenotype prediction. Specifi-
cally, the Single-Tower MtCro comprises only the Tower 
network layer and Gating Network dedicated to the cur-
rent task, excluding Tower Network layers and Gating 
Networks for other tasks. The structure and number of 
Experts in the Shared Bottom remain consistent with 
the Multi-Tower MtCro. To ensure that the Single-Tower 
MtCro model does not incorporate information from 
other phenotypes, all shared bottom modules within the 
Single-Tower MtCro model were trained from scratch. 
This design allows us to scrutinize the gains in predictive 

Fig. 6  Performance Evaluation of Various Models on the Maize8652 Dataset. The right figure displays the MSE for each model, while the left figure il-
lustrates Pearson correlations

 

Fig. 5  Pearson Correlation Coefficients between Model Predictions and Ground Truth on the Wheat599 Dataset
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performance attributed to the consideration of other 
phenotypes when focusing on a particular phenotype.

We observed a consistent enhancement in the predic-
tive performance of the current phenotype when con-
sidering other phenotypes, as shown in Fig. 7. From the 
heatmap analysis in Fig.  2, it is evident that there is a 
strong correlation between phenotypes in this dataset. As 
a result, the Multi-Tower MtCro model outperforms the 
Single-Tower MtCro model across all phenotypes. Spe-
cifically, there was a 1% improvement for the LENGTH 
phenotype, a 2-3% enhancement for TKW, WIDTH, and 
TESTW phenotypes, and the most substantial improve-
ment of 4–5% for the HARD and PROT phenotypes. This 

supports our hypothesis that phenotypes with high pre-
dictive accuracy can significantly enhance the predictive 
capabilities of phenotypes with lower accuracy.

Figure 8 illustrates the outcomes on the Wheat599 and 
Maize8652 datasets, where the heatmap analysis reveals 
weaker correlations between phenotypes compared to 
the Wheat2000 dataset. As a result, the improvement 
of the Multi-Tower MtCro model over the Single-Tower 
MtCro model is relatively modest, with a 1–2% improve-
ment across all phenotypes in Maize8652. However, in 
the Wheat599 dataset, there is a 1% negative impact on 
the ENV1 phenotype. Analysis revealed a correlation 
coefficient of only 0.1 between the ENV1 phenotype 

Fig. 8  Comparison of Results between Single-Tower and Multi-Tower MtCro Models on the Wheat599(left) and Maize8652(right)

 

Fig. 7  Comparison of Results between Single-Tower and Multi-Tower MtCro Models on the Wheat2000 Dataset. The Single-Tower model takes only the 
phenotype of the current task as input, resembling a single-task model. In contrast, the Multi-Tower model incorporates inputs involving all phenotypes 
within the current dataset, essentially representing a multi-task model with the same architecture as the Single-Tower MtCro
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and those in the other three environments within the 
Wheat599 dataset. We hypothesize that, in scenarios of 
extremely low correlation, these phenotypes might nega-
tively affect the predictive performance of the current 
phenotype.

Comprehensive evaluation of model performance and 
robustness
Since the Wheat599 dataset contains data for a single 
trait across four different environments, the genomic 
prediction accuracy is likely to be more precisely evalu-
ated by using Best Linear Unbiased Estimates (BLUEs) 
for these environments. Therefore, we used BLUE to fit 
the predicted and actual values and computed the regres-
sion coefficients between them to illustrate their linear 
relationship. The specific results are shown in Fig. 9. The 
MtCro model achieved optimal prediction performance 
across all environments, surpassing the multi-phenotype 

prediction model MTUE by 0.6 points in ENV4. More-
over, it outperformed the current best model by 0.07 to 
0.22 points across all environments.

To further assess the robustness of the models, we 
conducted a five-fold cross-validation and evaluated 
the performance of various deep learning models under 
different parameter initializations on the Maize8652 
dataset. The models evaluated in this study include Light-
GBM, DNNGP, SoyDNGP, MTUE, and MtCro, all of 
which have been previously validated on the Maize8652 
dataset. Table 2 presents the standard deviations of these 
five models under five-fold cross-validation. The results 
indicate that, although the LightGBM model exhib-
its superior performance on the Maize8652 dataset, as 
shown in Fig. 6, it demonstrates a larger standard devia-
tion when the dataset undergoes shifts. This suggests that 
its robustness is inferior compared to the other four deep 
learning models. In contrast, both DNNGP and MTUE 

Table 2  Standard Deviations of Various Models under Cross-validation on the Maize8652 dataset. “SD(MSE)” refers to the standard 
deviation of the MSE metric, and “SD(Pearson)” refers to the standard deviation of the Pearson correlation coefficient
SD(MSE) DTT PH EW SD(Pearson) DTT PH EW
DNNGP 0.00098 0.00155 0.00265 DNNGP 0.004 0.005 0.005
SoyDNGP 0.00073 0.00249 0.00431 SoyDNGP 0.008 0.009 0.011
Lightgbm 0.00087 0.00215 0.00514 Lightgbm 0.011 0.007 0.008
MTUE 0.00081 0.00107 0.00239 MTUE 0.006 0.004 0.007
MtCro 0.00069 0.00083 0.00074 MtCro 0.003 0.003 0.002

Fig. 9  BLUE Score between Model Predictions and Ground Truth on the Wheat599 Dataset
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demonstrate smaller standard deviations, reflecting their 
greater robustness in the face of such shifts. Notably, 
MtCro achieves the smallest standard deviations across 
all phenotypes, highlighting its strong robustness due 
to its integration of multi-phenotype features alongside 
phenotype-specific characteristics. This enables MtCro 
to maintain stable performance even when data shifts 
occur, showcasing its superior robustness in dynamic 
environments.

In Table  3, we evaluate the performance of four deep 
learning models under different random seed initializa-
tions, focusing on the phenotypic performance metrics. 
The experimental indicators are the standard deviations 
of the MSE and Pearson correlation coefficient for three 
phenotypes on the Maize8652 dataset. The experimental 
results demonstrate that, despite variations in random 
seed initializations, MtCro consistently maintains the 
highest robustness among the four models.

Discussion
Genomic selection enables breeders to identify variet-
ies with significantly improved agronomic performance, 
thereby addressing global food security challenges. In this 
work, we propose a multi-task deep learning approach to 
predict crop phenotypes by utilizing the genetic informa-
tion contained in genomic data. The results demonstrate 
that MtCro can effectively integrate multiple tasks, such 
as simultaneous prediction of multiple traits in crops. 
The independent test set showed that MtCro could 
achieve similar and better performance than the single-
task learning approach in both tasks. Overall, the suc-
cess of MtCro in crop multi-tasking genome prediction 
provides a novel framework for breeders to help in the 
selection of superior breeding lines and accelerates the 
breeding cycle.

Plant breeders are routinely interested in multiple 
traits, which can complicate the progress of genomic 
selection. Typical predictive models are univariate (i.e., 
one trait), which fails to take full advantage of potential 
correlations between different traits in the genomic data, 
and the process is time-consuming. Furthermore, current 
multi-trait prediction models are outperformed by sin-
gle-trait models due to the absence of task-specific lay-
ers. In this work, MtCro effectively utilizes a single model 
to learn SNP information from crop and predict multiple 
traits, with significant advantages in model prediction 
ability, training time, and number of model parameters. 

Unlike traditional architectures, we developed a distinc-
tive MLP-based multitasking model with embedded 
input layers, expert components, gated networks, and 
tower networks, enabling dynamic weight allocation 
for enhanced robustness. The architecture is tailored to 
meet the specific needs of genetic prediction tasks, guar-
anteeing the model’s superior performance in process-
ing extensive SNP data. We compared MtCro with other 
methods for predicting complex traits in three different 
datasets and achieved excellent performance, demon-
strating that MtCro can help in predicting crop multi-
trait potentials.

Although our MtCro model achieves improved perfor-
mance in multi-task prediction of crop phenotypes, some 
limitations remain. Crops are affected by both internal 
and external environments. However, our model does 
not incorporate environmental phenotypic variation and 
is unable to capture the complex genotype-environment 
type relationships [41]. To better understand crop phe-
notypes, environmental factors need to be fully explored 
to improve predictive breeding. Second, the current ver-
sion of MtCro only considers genomic data of crops as 
input learning. In practice, incorporating and fusing 
multimodal information such as transcriptomic data, 
structural variation (SV) and proteomics data have the 
potential to improve model performance. While MtCro 
provides a new framework for genomic prediction, the 
model still needs to be tuned and trained before being 
used. Consistent with all deep learning models, the per-
formance of the trained model is heavily dependent on 
the selected training model hyperparameters. In addi-
tion, exploring how multi-task learning can improve the 
predictive performance of models, how to reduce ran-
domness in neural network training, and how to inte-
grate more tasks by designing new loss functions will be 
important directions for future research.

In conclusion, this study proposes a multi-task neural 
network genome prediction method. To our knowledge, 
this is the first time that multitask learning has been 
used for genome prediction. MtCro can serve as a com-
munity resource that promises to accelerate crop breed-
ing through targeted selection of superior germplasm for 
multiple traits. In future work, we plan to extend MtCro 
to support multi-phenotype prediction for more crops.
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